

MODULE SPECIFICATION PROFORMA

Module Code:	ENG766		
Module Title:	Structural Integr	ity & Optimisation	
Level:	7	Credit Value:	20
Cost Centre(s):	GSAC	JACS3 code:	J500

School:	Applied Science, Computing & Engineering	Module Leader:	Martyn Jones	
Scheduled learning and teaching hours				40 hrs
Guided independent study				160 hrs
Placement				0 hrs
Module duration (total hours)				200 hrs

Programme(s) in which to be offered (not including exit awards)	Core	Option
MSc Engineering (Aeronautical) MSc Engineering (Mechanical Manufacture)	~	
MSc Engineering (Automotive)		

Pre-requisites

Office use only

Initial approval:19/06/2018With effect from:01/09/2018Date and details of revision:

Version no:1

Version no:

Module Aims

- To enable students to understand how material allowables are formulated in order to design structures
- To develop further the students' knowledge of failure mechanisms in static structures
- To provide students with the critical awareness of temporal failures of materials, such as creep and environmental factors such as thermal loads
- To enable students to critically understand fracture and crack propagation in metals
- To allow students to develop their understanding of how material degrade over time and how this affects their structural strength.

Intended Learning Outcomes

Key skills for employability

- KS1 Written, oral and media communication skills
- KS2 Leadership, team working and networking skills
- KS3 Opportunity, creativity and problem solving skills
- KS4 Information technology skills and digital literacy
- KS5 Information management skills
- KS6 Research skills
- KS7 Intercultural and sustainability skills
- KS8 Career management skills
- KS9 Learning to learn (managing personal and professional development, selfmanagement)
- KS10 Numeracy

At	the end of this module, students will be able to	Key Skills		
1	Demonstrate a conceptual understanding of material	KS1	KS3	
		KS6		
	allowables and how they are developed			
2	Be able to recognise failure mechanisms in metallic structures and state the suitability of their use in applications	KS1	KS2	
		KS6	KS8	
		KS10		
3	Identify the temporal failure mechanisms in systems and of how thermo-mechanical loading can change material	KS1	KS2	
		KS5	KS6	
	properties			
	Demonstrate a critical understanding of fatigue failure in structures and how design can be used to reduce the effect of	KS1	KS3	
4		KS5	KS6	
	cyclic loading.	KS9	KS10	
5	Discuss how failure due to cyclic loading can be predicted and measured using new and innovative methods	KS1	KS3	
		KS4	KS5	
		KS6	KS8	
	Use Finite Element Analysis (FEA) to estimate crack	KS1	KS5	
6		KS6	KS8	
	propagation and fatigue life	KS9	KS10	
Transferable skills and other attributes				

- 1. Communication
- 2. ICT Technologies
- 3. Time management and organisation
- 4. Interpersonal skills
- 5. Problem solving
- 6. Information handling including numeracy

Derogations

Credits shall be awarded by an assessment board for those Level 7 modules in which an overall mark of at least 50% has been achieved with a minimum mark of 40% in each assessment element.

Assessment:

Indicative Assessment Tasks:

Assessment One: A examination topics including (but not limited to) allowables, failure mechanisms in metallic structures, environmental factors that affect structural integrity and damage tolerance in design

Assessment Two: A report solving a dynamic structural loading problem. The report will include how failure is predicted, how it is analysed computationally and a prescribed solution to the problems.

Assessment number	Learning Outcomes to be met	Type of assessment	Weighting (%)	Duration (if exam)	Word count (or equivalent if appropriate)
1	1, 2, 3	Examination	50	2hrs	
2	4, 5, 6	Report	50	N/A	2000

Learning and Teaching Strategies:

A series of workshop style lectures with student-led seminars and computer tutiorials. Directed learning using library and internet resources will be facilitated using Moodle.

Syllabus outline:

- Metallic structures, how does the crystalline structure affect the property of the material
- Alloying and material processing effect on properties, with reference to cold working, annealing etc
- Pyramid of testing, A and B basis allowables.
- Outline of different failure criterion and how they are used in design and optimisation
- Temporal and environmental related failure, including creep, corrosion fatigue, thermal shock and cycling
- Fatigue failure, to inluce S-N and E-N curves, stress concentrations etc
- Crack propagation and methods to limit its structural affect.

- Computational modelling of fatigue and crack propagation using Finite Element Analysis.
- Traditional and advanced methods on how to monitor structural integrity

Indicative Bibliography:

Essential reading

Askeland, DR. (2017), Essentials of materials science and engineering, Stamford, CT : Cengage Learning

Other indicative reading

Anderson, L. (2017), Fracture Mechanics: Fundamentals and Applications, Fourth Edition, CRC Press

Pytel, A (2012): Mechanics of materials, Stamford, CT ; Singapore : Cengage Learning

Tada, H. (2000) The stress analysis of cracks handbook. New York : ASME Press

Blake, A, (1990) Practical stress analysis in engineering design. New York: M. Dekker.

Plus various others to be signposted on Moodle.